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Abstract— This paper describes the development of a
terrain-aided localization framework for autonomous land ve-
hicles operating at high speeds in unstructured, expansive and
harsh environments. The localization framework developed is
sufficiently generic to be used on a variety of other autonomous
land vehicles and is demonstrated by its implementation using
field data collected from two different trials on two different ve-
hicles. The results demonstrate the robustness of the proposed
localization algorithms in producing reliable and accurate posi-
tion estimates for autonomous vehicles operating in a variety of
unstructured domains.
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I. Introduction

THE research addressed in this paper is concerned
with the theoretical development and practical

implementation of reliable and robust localization algo-
rithms for autonomous land vehicles operating at high
speeds in unstructured, expansive and harsh environ-
ments [1]. Localization is the ability of a vehicle to de-
termine its position and orientation within an operat-
ing environment at any given time. The need for such a
localization system is motivated by the requirement of
developing autonomous vehicles in applications such as
mining, agriculture, cargo handling and construction.
The main drivers in these applications are safety, ef-
ficiency and productivity. The approach taken to the
localization problem in this paper guarantees that the
safety and reliability requirements imposed by such ap-
plications are achieved. The approach also aims to
minimize the engineering or modification of the envi-
ronment, such as adding artificial landmarks or other
infrastructure, a key driver in the practical implemen-
tation of a localization algorithm [2].

In pursuit of these objectives, this paper develops
a unified localization framework that uses measure-
ments from both artificial and natural landmarks, com-
bined with dead-reckoning sensors, to deliver reliable
vehicle position estimates. The proposed localization
framework is sufficiently generic to be used on a va-
riety of other autonomous land vehicle systems. This
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is demonstrated by its implementation using field data
collected from two different trials on two different ve-
hicles. The first trial was carried out on a four-wheel
drive vehicle in an underground mine tunnel. The sec-
ond trial was conducted on a Load-Haul-Dump (LHD)
truck in a test tunnel constructed to emulate an under-
ground mine. The estimates of the proposed localiza-
tion algorithms are compared to the ground truth pro-
vided by an artificial landmark-based localization al-
gorithm that uses bearing measurements from a laser.

The paper is organized as follows: Section II de-
velops an Iterative Closest Point - Extended Kalman
Filter (ICP-EKF) algorithm - a map-based iconic algo-
rithm that utilizes measurements from a scanning laser
rangefinder to achieve localization. The ICP-EKF al-
gorithm entails the development of a map-building al-
gorithm. The development and implementation of an
entropy-based metric to evaluate the information con-
tent of measurements and how this metric facilitates
the augmentation of landmarks to the ICP-EKF al-
gorithm guaranteeing reliable and robust localization
is the subject of Section III. Section IV details the
development and adaptation of a view-invariant Cur-
vature Scale Space (CSS) landmark extraction algo-
rithm. The algorithm is sufficiently robust to sensor
noise and is capable of reliably detecting and extract-
ing landmarks that are naturally present in the envi-
ronment from laser rangefinder scans. The integration
of the information metric, the CSS and the ICP-EKF
algorithms to arrive at a minimal infrastructure local-
ization framework is detailed in Section V. Finally,
Section VI summarizes the key results.

II. Map-Based Iconic Localization

A bearing-only laser was mounted on the roof of the
vehicles (for both the trials to be described in the fol-
lowing sections) so that it could detect strategically
placed artificial landmarks (reflective stripes) in the
trial environment. The exact position of these land-
marks were made available from surveying using a dig-
ital theodolite. When the laser mounted on the ve-
hicle moves through the environment, it detects the
presence of these landmarks. Thus as the vehicle tra-
verses through the environment, a sequence of bearing
measurements to a number of fixed and known loca-
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tions are made. Since the locations of these reflectors
are known to the vehicle navigation system, the loca-
tion of the vehicle can be computed from the bearing
measurements made. Utilizing bearing measurements
from a bearing-only laser in combination with dead-
reckoning sensors (velocity and steering encoders and
rate of change of orientation information from an in-
ertial measurement unit), an EKF was employed to
obtain ground truth.

The pose estimates obtained using the above arti-
ficial landmark algorithm were used to decouple the
problems of map-building and map-aided pose estima-
tion. Although it may not be appropriate to engineer
the environment with artificial landmarks, it is pos-
sible to use a slow moving vehicle and a small num-
ber of landmarks to build a sufficiently accurate initial
map. The reflective stripes required for the artificial
landmark algorithm can be removed and the generated
map can be used for vehicle localization. When the ve-
hicle is stationary, it is easy to construct the vertices
of a polyline that fit the data. When the vehicle starts
moving, new range data obtained from the sensor needs
to be integrated into the polyline map. Towards this,
an incremental algorithm was developed for obtaining
the optimal location of the vertices of the polyline in
view of the new incoming data. Clearly as the vehicle
moves, there will be observations that correspond to
parts of the tunnel walls that were not seen before and
therefore are not represented by the existing polyline.
These observations were collected to expand the map
by attaching line segments to either end of the polyline
as the vehicle moves gradually along the tunnel. The
proposed map-building algorithm is specific to this ap-
plication and is not intended for high level tasks such
as path planning where the required accuracy of the
map would be higher. The polyline representation was
chosen because of its simplicity. The curved surfaces
of the environment can be represented using splines
or a combination of line segments and arcs except for
the fact that the additional complexity in such repre-
sentations is not required for this application. As will
be demonstrated, the maps obtained by the proposed
map-building algorithm for both the 4WD vehicle and
the LHD truck are adequate for localization.

Once the map is available, the next step towards
achieving localization is map-registration. This stage is
often referred to as the correspondence determination.
Here, the correspondence problem involves registering
the 2D laser range data to the 2D map. The Iterative
Closest Point (ICP) algorithm [3] is employed to obtain
the correspondence. As the iconic ICP algorithm works
directly on sensed data, it does not require extraction
and registering of features. The crux of the Iterative
Closest Point (ICP) algorithm is to iteratively match
points in one set to the closest points in another set,

given that the transformation (the translation and/or
rotation) between two sets is small. Here, the two point
sets are the map and the laser range data, respectively.
The shortcoming of the ICP algorithm is that it can
only deal with cases when the first set is a subset of
the second set. Zhang [3] developed a similar idea for
establishing the correspondence which will be hereafter
referred to as the ICP algorithm. The strength of this
algorithm lies in the fact that it is capable of dealing
with gross outliers in the data, occlusion and appear-
ance and disappearance in which points in one set do
not appear in the second set.

With the ICP algorithm there is no definitive way
in which the uncertainty of the range data can be
taken into account. Although Zhang discusses partial
ways to accommodate the measurement uncertainty,
ICP alone does not provide sufficiently reliable and
accurate vehicle motion estimates. These shortcom-
ings are overcome by combining the ICP with a post-
correspondence EKF. The laser observations that do
not correspond to any line segment of the map are dis-
carded during the EKF update stage thus making it
robust to errors in the map. Another attractive and
appealing feature of this combined ICP-EKF algorithm
is that observations from a variety of different sensors
can be easily combined, since the changes are reflected
only as additional observational states in the EKF [4],
[5].

The vehicle employed in the first trial was a four-
wheel drive (4WD) Troop Carrier shown in Figure 1.
The estimated path of the 4WD vehicle (solid line)
provided by the ICP-EKF algorithm along with the
artificial landmark-based path (dotted line1) and the
generated map using the proposed map-building algo-
rithm is shown in Figure 2(a). Note that the map
captures the geometry of the environment adequately.
The curved surfaces are sufficiently modeled by shorter
line segments in the polyline map. The vehicle travels
a distance of 150 meters along the tunnel from right to
left. The orientation estimated by the ICP-EKF (solid
line) and that obtained by the artificial landmark al-
gorithm (dotted line) are shown in Figure 2(b). The
corresponding 2σ confidence bounds for the absolute
error in x, y and φ are shown in Figure 3. It can be
seen that the errors are bounded and thus the pose
estimates are consistent. It is also clear that the es-
timated path is in close agreement with the artificial
landmark-based path.

The second vehicle that was considered for the veri-
fication of the proposed algorithms is the LHD truck.
LHDs are the work horses of the mining industry. The
vehicle has a front and a rear body which can rotate

1As the estimates and the their corresponding ground truth
are very close, extra effort is required on the part of the reader
to distinguish between the two.
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Fig. 1. The 4WD trial vehicle used in the underground mine
trials. The location of the wheel and steering encoders, two
time-of-flight range and bearing lasers and the bearing-only
laser is shown.

relative to each other and the front and rear wheel
sets are fixed to remain parallel with the body of the
vehicle. Steering is achieved by driving the articula-
tion joint located mid-way between the front and rear
axles. Both the front and rear wheel sets are driven
at the same speed through a single transmission. The
LHD and its sensor suite are shown in Figure 4.

Unique variations in data sets are necessary to es-
tablish an unambiguous correspondence with the map.
Whenever the uniqueness can not be guaranteed, the
ICP-EKF algorithm can fail to produce reliable asso-
ciation. The ICP algorithm provides a single trans-
formation for each registration. Given the data sets,
a set of transformations satisfies the registration. In
the case of long tunnels or circular regions, this is too
restrictive. For the tunnel, it is the set of transforma-
tions that align the walls independently of the position
along the wall. Essentially what this means is that
the position of the vehicle will be uncertain along the
longitudinal direction of the tunnel. When using an
EKF that combines range scan registration with dead-
reckoning uncertainty, the positional covariance (or the
uncertainty ellipse) will be large along the directions
that can not be locked down by range scan registration
alone. When the vehicle encounters a region that can
be reliably recognized, the positional covariance can
be reduced. When such regions are not encountered,
some form of external aiding needs to be provided in
regions where the ICP-EKF algorithm fails.

For the LHD, the ICP fails to produce correct corre-
spondences in certain regions of the tunnel when there
are degeneracies in rigid transformations during reg-
istration. The proposed method of overcoming these
deficiencies is to incorporate landmarks that provide
aiding information to guarantee reliable localization.
A strategy to augment the ICP-EKF algorithm with
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Fig. 2. ICP-EKF estimated path (a) and orientation (b) of the
4WD vehicle (solid line) and the artificial landmark-based path
and orientation (dotted line). In (a), the starting location of the
vehicle is at (133.3,−17.8) and the direction of travel is from
right to left.

a limited number of artificial landmarks is developed
in Section V. These landmarks are then detected by
the bearing-only laser to overcome limitations of the
ICP-EKF algorithm.

Being an iterative algorithm, the initial pose esti-
mate that is made available to the ICP is extremely
important as the resultant correspondences depend on
a good initial estimate. For the 4WD vehicle, the
landmark augmentation procedure was not necessary
in spite of long, straight sections of the tunnel. The
reason for this is two fold. Firstly, the slippage the
4WD vehicle experiences due to the undulatory na-
ture of the terrain is less than that of the LHD. In
addition to the uneven nature of the terrain, the LHD
slips much more than the 4WD vehicle due to the ge-
ometry of the tunnel and the kinematics of the truck
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Fig. 3. The 2σ confidence bounds are computed using the
covariance estimate for the error in x, y and φ compared to
the actual error computed with the corresponding artificial
landmark-based estimates for the 4WD trial.

Fig. 4. The Load-Haul-Dump truck and its sensor suite. The
LHD was fitted with two two-dimensional time-of-flight range
and bearing lasers. The bucket is in front of the vehicle. A
bearing-only laser scanner, as in the case of the 4WD trials, de-
tects the presence of artificial landmarks. Encoders were used
to measure the vehicle velocity and the articulation (steering)
angle.

itself. Secondly, the 4WD vehicle model produces good
prediction estimates enabling the ICP to provide accu-
rate correspondences thus obviating the need for land-
mark augmentation. For the articulated LHD, dead-
reckoning is not as good as that for the 4WD vehicle.
Even explicitly taking into account wheel slippage with
the inclusion of the two slip variables, αv and βv [1],
the dead-reckoning estimates that are the initial esti-
mates to the ICP are poor and accordingly the corre-
spondences are no longer accurate. For these reasons,
external landmark aiding becomes necessary for the
LHD.

III. Landmark Selection and Augmentation

The proposed method for the selection of a partic-
ular landmark is based on localization information of-

fered by a particular landmark from a given vehicle
pose. This method implicitly takes into account the
uncertainty in the vehicle pose estimate while com-
puting the information content of the landmark. The
concept of entropy is employed to facilitate landmark
augmentation.

The entropy h ( · ) is a measure of the average un-
certainty of a random variable and thus represents the
compactness of the probability distribution. Subse-
quently, it is a measure of the informativeness of the
distribution where information is defined as the nega-
tive of entropy. The entropy is minimum when infor-
mation is maximum. It is conventional to seek min-
imal entropy when actually maximum information is
sought. A mathematical expression for the entropy of
a Gaussian distribution is to be developed. For an n-
dimensional state vector xk conditioned on a stacked
observation vector denoted by Zk

�
= [z1, z2, . . . , zk]

where z1, z2, . . . , zk are individual sensor measure-
ments, the posterior entropy can be derived to be [6]:

hk|k
�
= h (p (xk | Zk))
= E {−�n p (xk | Zk)}
= 0.5 �n

[
(2πe)n ∣∣Pk|k

∣∣]
Thus for a Gaussian (normal) vector distribution all
that is required to compute its entropy is its length, n
and covariance, P.

The posterior and prior information metrics can then
be defined as:

imk|k
�
= −h (p (xk | Zk))

= −0.5 �n
[
(2πe)n ∣∣Pk|k

∣∣]
imk|k−1

�
= −0.5 �n

[
(2πe)n ∣∣Pk|k−1

∣∣]
The resultant information contribution, ic, from

measurements, is thus given by the relation:

ick|k
�
= imk|k − imk|k−1 (1)

To overcome cases in which the ICP-EKF algorithm
has insufficient information, the system is augmented
with a limited number of artificial landmarks along cer-
tain sections of the tunnel. To realize this goal, the fol-
lowing three questions need to be answered: 1) When
should a landmark or landmarks be added for external
aiding? 2) How to select potential landmarks in order
to overcome the divergence of the ICP-EKF estimates?
Additionally, given a set of landmarks, how to select a
landmark or landmarks that are optimal in the sense
of increasing the robustness of localization? 3) Given
a set of optimal landmark(s), how to incorporate these
external aiding measurement(s) from the landmark(s)
into the existing ICP-EKF framework?
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The first two questions are answered in the following
paragraphs and the landmark augmentation method-
ology is detailed in Section V.

• Landmarks are introduced when the estimated
pose covariances exceed a predefined bound. The
growth in covariance is a direct result of inaccurate
correspondences provided by the ICP. Without addi-
tional landmarks, this would eventually lead to filter
divergence.

The issue of computing a potential landmark set that
can be employed to provide aiding measurements is
addressed as follows:
• Potential landmarks can be computed from a given
vehicle position since the artificial landmark locations
are available as is the direction of vehicle travel. By
discarding landmarks that are farther than a prede-
termined distance (proportional to the range of the
bearing-only laser when artificial landmarks are to
be augmented or to that of the range and bearing
laser when natural landmarks are to be augmented),
a landmark set can be arrived at and denoted by:
Lpl:(Xipl

,Yipl
), ipl = 1 : npl, where npl is the num-

ber of landmarks in the set.
• From the current vehicle position, for all the land-
marks in the set Lpl, the predicted bearing measure-
ment (range and bearing measurements in the case of
natural landmarks) is computed and is checked to see
if this measurement is acceptable.
• For all acceptable measurements, the individual in-
formation contributions are computed according to
Equation (1). Finally, the landmark that provides the
maximum information from the potential set of land-
marks is selected for augmentation.

IV. Multiscale Natural Landmark Extraction

Feature or natural landmark-based methods for au-
tonomous localization have become increasingly popu-
lar as they do not require infrastructure or other exter-
nal information to be provided to the vehicle for oper-
ation. Feature-based localization methods require that
natural landmarks can be robustly detected in sensor
data, that the localization algorithm can reliably as-
sociate landmarks from one sensor observation to the
next, and that the method can overcome problems of
occlusion, ambiguity and noise inherent in measure-
ment data. In indoor environments, features such as
walls (line-segments), corners (diffuse points) or door-
ways (range discontinuities) are used as landmarks. In
outdoor environments however, similar simple features
are sparse and infrequently observed. In unstructured
or natural outdoor environments a more general no-
tion of a landmark or navigation feature is required.
Given a (laser) range scan of an environment, one nat-
ural measure of feature or landmark significance is the
local curvature in this range data. Rapidly changing

range data indicates either a significant physical dis-
continuity or a prominent geoform. The use of local
curvature as an interest measure is well known in the
computer vision community. Further, and most impor-
tant for navigation, curvature extrema are well known
to be view-point invariant. Practically, this means that
points of maximum curvature can be used as robust
point landmarks in localization.

Scale space filtering is a qualitative signal descrip-
tion method that deals with the problem of scale by
treating the size of a smoothing kernel as a continuous
parameter [7]. The main idea of multiscale representa-
tion is to successively suppress fine scale information
and thus to progressively remove the high frequency
information which results in the signal becoming grad-
ually smoother. The common way of constructing a
scale space is by convolution with a Gaussian kernel.
The essential requirement here is that a signal at a
coarser (higher) scale level should contain less struc-
ture than at a finer (lower) level of scale. In scale
space methods, a qualitative description of the signal
is obtained by studying the behavior of the extrema
over the continuum of scales. Also the extrema that
survive over larger smoothing extents are considered
to be more significant than others. Attenuation of the
noise in the signal is realized by convolving the signal
with the Gaussian kernel.

A Curvature Scale Space (CSS) algorithm was devel-
oped to identify, extract and localize landmarks char-
acterized by points of maximum curvature at succes-
sive geometric scales. The CSS algorithm can be used
to extract curvature extrema from laser scan data cor-
responding to landmarks at different scales that are:
1) invariant to rotation and translation of the shape
(signal) under consideration 2) robust to noise and 3)
reliably detected and localized. The basic principle
of the CSS algorithm to identify dominant points is:
“Convolve a signal with a Gaussian kernel and impart
smoothing at different levels of scale (the scale being
proportional to the width of the kernel). From the re-
sulting convolved signal, identify the dominant points
(curvature extrema).” For various degrees of smooth-
ing of the curve (segmented range scan), it is desired to
find the curvature extrema. A parametrization of the
curve is necessary to compute the curvature at varying
levels of detail (for segmentation and parametrization
procedures see [8]). A parametrization is possible by
considering a path length variable along the curve and
expressing the curve in terms of two functions x(s) and
y(s) such that C = {x(s), y(s)} with s being a linear
function of the path length ranging over the closed in-
terval [0, 1]. The curvature, κ, is given by:

κ(s, σ) = Ẋ(s, σ)Ÿ (s, σ) − Ẏ (s, σ)Ẍ(s, σ)

where
{

Ẋ(s, σ), Ẏ (s, σ)
}

and
{

Ẍ(s, σ), Ÿ (s, σ)
}

are



6

obtained, respectively, by convolving x(s) and y(s)
with the first and second derivatives of the Gaussian
kernel. The Gaussian kernel is given by: g(s, σ) =

1
σ
√

2π
e−s2/2σ2

where σ is the width of the kernel. By
employing the CSS algorithm, dominant points are ex-
tracted based on the persistence within a scan and over
consecutive scans. Features that exist only at finer
scales and disappear at higher scales do not correspond
to stable features and thus do not qualify as reliable
candidates for subsequent detection and tracking dur-
ing the vehicle localization stages. Persisting dominant
points enable the construction of a natural landmark
map based on which natural landmark-based localiza-
tion is achieved.

V. Landmark Augmented Minimal
Infrastructure Localization

This section describes the localization of the LHD
using both artificial and natural landmarks. Natural
landmarks characterized by dominant points of curva-
ture were extracted from laser rangefinder scans and
a natural landmark map was built using the curvature
scale space algorithm as detailed in Section IV. Such
a natural landmark map can then be used to augment
the ICP-EKF framework thereby reducing the number
of artificial landmarks that are required for reliable and
robust localization.

A. Natural Landmark Observation Model

The laser rangefinder provides both range and bear-
ing to a landmark and accordingly an equation relating
both of them to the vehicle (laser) location is required.
The predicted range and bearing, respectively, for each
natural landmark j at discrete time-instant k is given
by the non-linear model:

Rj
n�k

=

√[
xj

n� − xLk

]2

+
[
yj

n� − yLk

]2

θj
n�k

= tan−1

[
yj

n� − yLk

xj
n� − xLk

]
− φvk

where (xj
n�, y

j
n�) is the cartesian location of landmark

j and (xL, yL) is the location of the laser rangefinder
on the vehicle. The observation model for a natural
landmark is thus given by:

Zj
n�k

=

[
Rj

n�k

θj
n�k

]
+

[
vR

n�k

vθ
n�k

]
(2)

where vR
n�k

and vθ
n�k

refer to the uncertainty present in
the range and bearing measurements and are modeled
as zero-mean uncorrelated Gaussian sequences with
constant variances, σ2

Rn�
and σ2

θn�
, respectively.

B. Entropy-based Artificial Landmark
Selection and Augmentation

During the vehicle localization stage, for every range
and bearing scan, natural landmarks are extracted and
are associated with those in the map. Details of natu-
ral landmark matching and discriminance procedures
are detailed in Section V-C. When the information
provided by these natural landmarks is not enough to
curtail the growth of the pose covariances, the entropy-
based landmark selection and augmentation method
is adopted to select the required artificial landmarks.
Whenever it is determined that the ICP-EKF frame-
work requires additional external aiding, all the land-
marks that are visible from the current vehicle position
are examined and the landmark that contributes the
maximum information is then selected.

C. Natural Landmark Matching and
Discriminance

Whenever a range and bearing scan becomes avail-
able, there is the need to decide whether the scan
should be used for a) Natural landmark-based local-
ization or b) ICP-EKF based localization. The same
scan should not be used for both as this amounts to
using the same information twice. To avoid such reuse
of information, the entropy-based information content
measure is utilized to determine to decide upon (a) or
(b). The pertinent localization procedure is arrived at
by looking at the information contribution provided by
both (a) and (b) and selecting the one that provides
maximum information towards localization.

When natural landmarks are used for localization, it
is essential that the extracted natural landmarks from
a scan are reliably matched to those in the map. When-
ever a range and bearing laser scan is received, the
dominant point landmarks are extracted in the same
fashion as described in Section IV. Locations of all the
extracted dominant points above a certain scale level
are then compared with the natural landmark map.
Two landmarks that differ only slightly in their posi-
tion should be identified as distinct within the limits
imposed by the sensor noise. Such discriminance is
achieved by checking if the computed innovation se-
quences pertaining to both the range and bearing of a
matched natural landmark fall within the normalized
innovation gate by using the natural landmark obser-
vation model given in Equation (2).

If the observations fall within the prescribed lim-
its, then the landmark is accepted as a match. Sub-
sequently, this observation is used to update the vehi-
cle states using the range and bearing innovation se-
quences that are obtained as a direct consequence of
the matched landmark measurement. The resultant in-
formation contribution from a matched natural land-
mark, icn�, and that after the ICP-EKF updates for
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the same scan, icicp−ekf , are computed by using Equa-
tion (1). Based on icn� and icicp−ekf , the procedure
that provides the maximum information is chosen. The
combined algorithm thus bounds the natural degrada-
tion of the ICP registering results when there are no
distinguishable landmarks along the longitudinal direc-
tion and ensures that the lateral matching (crucial for
vehicle guidance) is not deteriorated.

D. Results and Discussion

The results when both natural and artificial land-
marks are employed towards localization of the LHD
are discussed now. Figure 5(a) and (b) show the esti-
mated path and orientation of the LHD by the ICP-
EKF natural and artificial landmark-augmented algo-
rithm (solid line). It should be emphasized here that
the natural landmarks need to be extracted only once.
For localization in a tunnel over several trials, the
natural landmark extraction can be done on an ex-
ploratory trial run and such landmarks can then be
utilized. From Figure 5(a), it can be seen that the
landmark-augmented ICP-EKF algorithm provides es-
timates that are similar to the ground truth. Note
that natural landmarks have taken the place of artifi-
cial landmarks along the straight sections of the tunnel.
Unfortunately, in the circular loop section of the tun-
nel, there were not many persistent extractable natural
landmarks and this necessitated the inclusion of arti-
ficial landmarks. Nevertheless, the important point
to note here is that the number of required artificial
landmarks have been successfully reduced (by a factor
of four [1]). In environments where the extraction of
persistent dominant landmarks is possible, the artifi-
cial landmarks can be totally eliminated2. Figure 5
(b) shows the orientation of the two trials (solid line)
along with those provided by the artificial landmark
algorithm (dotted line).

Figure 6 shows the absolute pose errors computed
with the aid of the ground truth and the correspond-
ing 2σ (95%) confidence bounds. It is evident that the
errors remain white and are well within with the pre-
scribed bounds representative of consistent estimates.
Absolute error estimates of half a meter were achieved
in the position estimates with the corresponding error
in the orientation estimate being less that 5 degrees.

Figure 7 depicts the validated range and bearing in-
novation sequences along with the 1σ and 2σ bounds.
The discontinuity in the innovation sequences corre-
sponds to periods where there were no updates per-
formed as there were no natural landmarks available
during such periods. For example in Figure 7, the dis-
continuity from 177 − 200 seconds in both the range

2In fact, this claim was substantiated by a third trial run on
a Utility vehicle in an outdoor area populated by people and
moving cars in the University of Sydney campus [8].
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Fig. 5. Natural landmark-augmented ICP-EKF estimated path
(a) and orientation (b) of the LHD (solid line) and the artificial
landmark-based path (dotted line). In (a), the traversed path runs
right to left. The direction of travel is in the anti-clockwise direction
around the loop at the left end of the figure. The circles represent
the augmented artificial landmark locations and the crosses repre-
sent the natural landmark locations. The starting location is at
(81.1,−30.9).

and bearing innovation sequences corresponds to the
loop section of the tunnel where the external aiding is
predominantly provided by the artificial landmarks. It
can be seen that both the range and bearing innova-
tion sequences also remain white and are well within
the defined bounds.
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Fig. 6. Natural landmark-augmented ICP-EKF pose errors
and the 2σ confidence bounds computed using the covariance
estimate for the error in x, y and φ compared to the actual
error computed with the corresponding artificial landmark-
based estimates.
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Fig. 7. Range and bearing innovation sequences for the natu-
ral landmarks matched during the LHD trial. The 1σ and 2σ
confidence bounds are also shown.

VI. Conclusions

This paper discussed the development of a unified
terrain-aided framework for achieving minimal infras-
tructure localization of high speed vehicles operating
in unstructured and harsh environments.

The first step in the achievement of this goal was the
development of a map-based ICP-EKF localization al-
gorithm utilizing measurements from a scanning laser
rangefinder in combination with dead-reckoning sen-
sors. The next step was the identification of shortcom-
ings of the ICP-EKF algorithm and the development
of an entropy-based landmark augmentation metric to
overcome the deficiencies. Using this metric, evalua-
tion of information content of measurements was pos-
sible and thus facilitating the acceptance or rejection

of a particular landmark measurement. The metric
was shown to be an optimal way of efficiently utiliz-
ing measurements by implicitly incorporating the land-
marks’ utility towards reducing localization error. A
view invariant multiscale natural landmark extraction
algorithm was developed to extract point landmarks
characterized by dominant curvature points from laser
scans thus facilitating reliable detection and extrac-
tion of persistent natural landmarks. Attenuation of
noise inherently present in laser scans was achieved
by convolving the scans with a Gaussian kernel. The
algorithm was also shown to possesses the attractive
property of being invariant to rotation and translation
effects that the laser scans under consideration might
experience due to vehicle travel over harsh terrains.

Finally, the paper detailed the integration of the
information metric, the CSS and the ICP-EKF algo-
rithms to arrive at a unified localization framework.
The developed localization framework has the ability
to use measurements from both artificial and natural
landmarks as and when they become available and was
shown to be sufficiently generic to be used on a variety
of autonomous land vehicles, by its application to a
4WD vehicle and an LHD truck. The results demon-
strated the reliability and robustness of the proposed
framework.
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